University College London
Department of Computer Science

Cryptanalysis Exercises Lab 1

J. P. Bootle

Copyright © 2016 jonathan.bootle.14@ucl.ac.uk
May 27, 2018 Version 2.0


mailto:jonathan.bootle.14@ucl.ac.uk

Computing a modular inverse with Euclid

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

Click here for a reminder of the Extended Euclidean Algorithm.

EXERCISE 1. Let p and ¢ be two distinct primes.

(a) Show how to use the extended Euclidean algorithm to simultane-
ously compute p~' mod g and ¢g~' mod p.

(b) What is the complexity of this approach in terms of bit opera-
tions?

(¢) Compute 117! mod 17 using this method.

(d) Implement the Extended Euclidean Algorithm in SAGE, and use
it to compute 771 mod 159.

Primality Testing

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to

<< > > < > Back


https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

go back to the questions.
Click here for a reminder square-and-multiply algorithms.

EXERCISE 2.

(a) Create a function ‘MyPower’ which takes inputs a, k and n, and
computes a* mod n using a square-and-multiply algorithm.

(b) In the Fermat primality test, we test whether a number n is prime
by computing a” ' mod n and then checking whether the result
is equal to 1. If the result is not 1, then the number is not prime!
Using your function, and the is_prime function, find all of the
composite numbers between 2 and 2000 that pass the Fermat test
with a = 2. Repeat for a = 5.

(c) Using your answer to the previous question, or otherwise, find all
of the Carmichael numbers between 2 and 2000. Hint: remember
that if ged(a,n) > 1, then n does not need to pass the Fermat test
to base a to be a Carmichael number.

(d) Test any Carmichael numbers that you have found using the Miller-
Rabin test, again with a = 2 and a = 5. Do any of them pass the
test?

<< > > < > Back


https://en.wikipedia.org/wiki/Exponentiation_by_squaring#Basic_method
https://en.wikipedia.org/wiki/Carmichael_number

4

(e) (Bonus Question) Find a number larger than 5000 which passes
the Fermat test with base a, but fails the Miller-Rabin test to base
a. Using the sequence of values from the Miller-Rabin test, can
you factor the number without using trial division?

Smooth Numbers

Click on the green letter in front of each sub-question (e.g. (a) ) to
see a solution. Click on the green square at the end of the solution to
go back to the questions.

EXERCISE 3. Smooth numbers are useful in index calculus attacks
for factorising and computing discrete logarithms. A number n is B-
smooth if all of the prime factors of n are < B. Let ¥(B, N) be the
number of B-smooth numbers that are < V.
(a) Write a program to find ¥ (B, N)/N for (B, N) = (10,1019),
(15,107),(100, 10%).
Some tips: Try to write a program which efficiently generates
the smooth numbers < N from the primes < B, for example,

<< > > < > Back



5

by computing products of these primes and checking if they are
smaller than N. This will be much faster than a program which
factorises each number < N and checks whether the prime factors
are < B. If you want to be extremely efficient, try to think of a
clever way to avoid storing all of the numbers, and alternatives to
computing lots and lots of products.

(b) We have the approximation ¥ (B, N) =~ ﬁ [,<5 lﬁ)gg];[, where
m(B) is the number of primes < B. Compare the approximate
values of W/N with the true values computed by your program.
How close are these to the values you computed?

<< > > < > Back



Solutions to Exercises

Exercise 1(a) If necessary, swap p and ¢ so that p > ¢. Since p and
g are distinct primes, ged(p,q) = 1, and there exist integers A and B
such that Ap + B¢ =1. Then A =p~! mod g and B =¢~' mod p.
We compute these using the Extended Euclidean Algorithm.

One way to implement the extended Euclidean Algorithm is to use
the back-tracking approach, to be demonstrated in lectures. Other-
wise, the following method allows the answer to be calculated without
working backwards.

Set r_1 =pandrg=¢q. Wealsoset A_;1 =1, Ag=0, and B_; =
O, BO = 1. For each i, find Ai+1,Ti+1 such that Ti—1 = Q4175 + Ti41
as in the Euclidean Algorithm.

At each stage, compute A;11 = a;A4; + A;—1 and B;41 = a;B; +
B;_1. These values satisfy A;p — B;q = (—1)"T'r;. When the al-
gorithm terminates after n steps, r, = gcd(p,q) = 1. We take
A= (-1)""A, and B = (-1)"B,,. O

<< > > < > Back



Solutions to Exercises 7

Exercise 1(b) The Extended Euclidean Algorithm requires O(log(p)?)
bit operations. O

<< > > < > Back



Solutions to Exercises 8

a; Al B,

- - 1 0

- - 0 1
17=1-114+6 | 1 1 1
11=1-64+5 1 1 2
6=1-5+1 1 2 3

Figure 1: Ged of 17 and 11

Exercise 1(c¢) Again, we can easily find the answer using the back-
tracking method shown in lectures. The alternative solution from an
earlier part of the question is shown below.

Set r_1 = 17,79 = 11. Figure 1 shows working for the Extended
Euclidean Algorithm. We find that 2-17 —3-11 = 1. Therefore 11!
mod 17 = -3 = 14.

O

<< > > < > Back



Solutions to Exercises 9

Exercise 1(d) The SAGE code shown implements the Extended Eu-
clidean Algorithm as presented in lectures.

def gedl(a,b):
if mod(a,b) == 0:
return [b,0,1]
else:

q = (a- (a%b) )/ b
[d7 T, S]:ngl(baa_q*b)
return [d,s,r-q*s]
When run on 159 and 7, the output is [1,3, —68], so the answer is
—68.
]

<< > > < > Back



Solutions to Exercises 10

Exercise 2(a) The following code implements the square-and-multiply
Algorithm.
def MyPower(a,k,n):
K = bin(k)[2:]
A=a%n
¢ = (A" int(K][0]))
for j in range(1,len(K)):

c=("2)%n
¢ = c*(A” int(K[j])) % n
return c

<< > > < > Back



Solutions to Exercises 11

Exercise 2(b) The following code finds the answer for a = 2. For
a = 2 you should get 341,561, 645, 1105, 1387, 1729, 1905. For a = 5,
you should get 4,124, 217, 561, 781, 1541, 1729, 1891.
for i in range(2,2000):
if is_prime(i)==False and MyPower(2,i-1,i)==1:
print(i)

<< > > < > Back



Solutions to Exercises 12

Exercise 2(c) The Carmichael numbers between 2 and 2000 are
561,1105, 1729. O

<< > > < > Back



Solutions to Exercises 13

Exercise 2(d) The following code carries out the Miller-Rabin test
to base a. You should find that none pass with either a = 2 or a = 5.
def StrongTest(a,n):
if (n%2)==0:
return fail’
b =n-1
k=0
while (b%2)==0:
b=Db/2
k = k+1
A = MyPower(a,b,n)
ifA==1or A== (nl):
return ’pass’
for i in range(0,k):
A = MyPower(A,2/n)
if A == (n-1):

return ’pass’

(code continues on the next page)

<< > > < > Back



Solutions to Exercises

if A ==1:
return ’fail’
return ’fail’

<< > >

Back

14



Solutions to Exercises 15

Exercise 2(e) The number 5461 passes the Fermat test with base
a = 2, but fails the Miller-Rabin test. From this, we can deduce
that the sequence of values produced by the Miller-Rabin test ends
in 1, but does not contain —1. Therefore, the sequence gives us a
square-root 128 of 1 modulo 5461 which is not +1. We have 1282 =1
mod 5461. Rearranging, (128 + 1)(128 — 1) = 0 mod 5461, but 128
is not congruent to £1. Therefore, ged(129,5461) and ged (127, 5461)
give non-trivial factors of 5461. We find that 5461 = 43 x 127. d

<< > > < > Back



Solutions to Exercises

Exercise 3(a) The following code counts smooth numbers.
def CountSmooth(B,N):
P = Primes()
prime = 3
prime_list = [2]
while prime j= B:
prime_list.append(prime)
prime = next_prime(prime)
smooth numbers = [1]
for number in smooth_numbers:
for prime in prime_list:
n = number*prime
if not (n in smooth_numbers):
ifn j=N:
smooth_numbers.append(n)
return len(smooth_numbers)-1

<< > > < > Back



	 Solutions to Exercises



